University of Mumbai Syllabus Structure(R-2007) At

T.E. (Computer Engineering) Semester-V

Sr.	Sr. Subject Scheme of Instructions Scheme of Evaluati				f Evaluatio	on		
No.	5	Periods	per Week					
		Each Period of 60						
		Ν	Ain.					
		Theory	Practical	Pa	aper	TW	Practical	Total
				Hours	Marks		&Oral	
1.	Computer							
	Network	4	2	3	100	25	50	175
2.	Advance database							
	Management							
	System	4	2	3	100	25	50	175
3.	Microprocessor							
		4	2	3	100	25	25	150
4.	Theory of							
	Computer Science	4	2	3	100	25	-	125
5.	Web Engineering	4	2	3	100	25	25	150
6.	Environment Studies	2		2	50	25	-	75
		22	10		550	150	150	850

University of Mumbai					
Class: T.E.	Branch: Computer	Semester: V			
	Engineering				
Subject: Advanced Database	Management System(Abbrevi	ated as ADBMS	S)		
Periods per Week	Lecture	04			
(each 60 min)	Practical	02			
	Tutorial				
	Hours	Marks			
Evaluation System	Theory	03	100		
	Practical and Oral		50		
	Oral				
	Term Work		25		
	Total	03	175		

Module	Contents	Hours
1	Extended ER :	04
	• E-R model revisited	
	Specialization & Generalization	
	• Extended E-R	
	• Subclass super class	
	• Constraints and characteristics of specialization &	
	Generalization	
	• Relationship types of degree Higher than two	
	• Aggregation, Union and categories	
	• EER – To Relation Models Mapping	
2	Database Design Methodology:	04
	Role of information system in organization	
	Database design and Implementation Process	
3	Advanced SQL :	08
	• SQL Data types & Schemas	
	• Queries based on SQL 3 standards	
	• (outer join, multi join, left, right, a full outer join, equal join,	
	natural join	
	 Aggregate, functions, Null values etc. 	
	• EXIST and NOT EXIST, any / all, pattern matching	
	Dynamic SQL	
4	Query Processing :	04
	• Overview	
	 Measures of Query cost 	
	Selection operation	
	Sorting	
	Join Operations	
	Other Operations	
	Evaluation of Expression	

5	Query Optimization :	04
	• Translations of SQL Queries into relational algebra	
	Heuristic approach & cost base optimization	
6	Object Relational and Extended Relational Databases :	06
	• Overview of SQL 3	
	• Implementation issues for extended types, nested relations	
	and collections,	
	Storage and access methods	
-		10
7	Parallel and Distributed Databases and Client Server	10
	Architecture:	
	 Introduction : for parallel databases 	
	Parallel : Overy Evaluation	
	Parallelizing individual operations:	
	sorting joins etc. distributed	
	databases, concepts, data	
	fragmentation. Replication and	
	allocation techniques for	
	distributed database design. Query	
	Processing in distributed	
	databases, concurrency control and	
	recovery in distributed databases,	
	An overview of Client Server	
	Architecture.	
8	XML and Internet Databases:	06
	• Structured unstructured and semi structured data.	
	XML hierarchical Data Model	
	 XML Document, DTD and XML Schema 	
	• XML Documents & databases	
	• XML Query	

TERM WORK :

- 1. Atleast 6 practical experiments based on above syllabus
- 2. A mini project is desirable to be completed by a group of three with following specifications.
 - Problem definition
 - EER Model
 - Mapping to relational Model
 - Implementation should include user interface having two data entry forms and two reports. (using any connectivity of DBMS)

NOTE: The above (mini project) would carry a weightage of 10 marks.

A term work test must be conducted with a weightage of 10 marks.

Attendance 05 marks.

Practical Exam: Students are expected to develop a database application as a part of practical examination.

Text Books :

- 1. Elmasri & Navathe "fundamentals of Database Systems" IV edition. PEARSON Education.
- 2. Korth, Silberschatz sudarshan "Database systems, concepts" 5th edition McGraw Hill.

Reference Books :

- 1. Raghu Ramkrishnan & Johannes Gehrke "Database Management System" Tata McGraw Hill. III edition.
- 2. Stefano Ceri, Hillseppe , pelagatti "Distributed Databases, Principles and Systems" Tata Mc Graw Hill editions.
- 3. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle log, Black Books Dreamtech Press.
- 4. Mark L. Gillenson, Paulraj Ponniah "Fundamentals of Database Systems" WILEY

University of Mumbai				
Class: T.E.	Branch: Computer	Semester: V		
	Engineering			
Subject: Computer Network	(Abbreviated as CN)			
Periods per Week	Lecture	04		
(each 60 min)	Practical	02		
	Tutorial			
	Hours	Marks		
Evaluation System	Theory	03	100	
	Practical and Oral		50	
	Oral			
	Term Work		25	
	Total	03	175	

Objectives of the course: This is first course in Computer Networks. Need of Communication is the fundamental expectation along with the Layered approach of Computer Network. It is expected to know the details of layers along with the functionalities like: How each layer works? and how each layer communicates with other layers?

Pre-requisites: Course in Data Structures and computer organization, C/C++.

Module	Contents	Hours
1	Introduction: Network Applications; Network Hardware:	04
	Topologies, LAN, MAN, WAN, Wireless network, Home Network,	
	Internetworks; Network Software: Protocol Hierarchies, Design	
	Issues for the layers, Connection oriented and connectionless	
	Services; Reference Models: Layers details of OSI, TCP/IP Models.	
2	The Physical Laver	07
	Transmission Media: Guided Transmission Media: Twisted pair,	
	Coaxial, Fiber optics; Unguided media (Wireless Transmission):	
	Radio Waves, Microwaves, Infrared.	
	Network Hardware Components:	
	Connectors, Transceivers and Media converters, Network interface	
	cards and PC cards, Repeaters, Hubs, Bridges, Switches, Routers	
	and Gateways etc.	
	Telephone network: Major components, Local access transport	
	areas, Signaling, Services provided by telephone networks; Dial-up	
	Modems; Digital subscriber line: ADSL, HDSL, SDSL, VDSL;	
	Cable Television network: Cable TV for data transfer, BW,	
	sharing, CM and CMTS, Data transmission schemes: DOCSIS.	
3	The Data Dink Laver:	06
	Error detection and correction: Types of errors, redundancy,	
	detection versus correction, forward error correction versus	
	retransmission, coding; Block Coding: Error detection, Error	
	correction, Hamming distance, minimum hamming distance; ,	

	Linear block codes; Cyclic codes: CRC, hardware implementation, Polynomials, Cyclic code analysis, Advantages, Other cyclic codes;	
	Checksum; Data Link Control: Framing: Fixed size and variable size framing:	
	Flow and Error control, Protocols for Noisy Channels: simplex	
	protocol, Stop and wait protocol; Protocols for Noisy Channels:	
	Concept of Sliding Window Protocol, Stop and wait ARQ, Go-back-	
	HDLC. The Data Link Layer in the Internet. PPP	
	Eg.: Ethernet, Token Bus and Token Ring, FDDI, Bridge Protocols,	
	Switching in LAN environment	
4	The Medium Access Sub-layer:	
	The channel Allocation Problem: Static and Dynamic Channel	
	Allocation; Random Access: ALOHA, CSMA, CSMA/CD,	
	passing: Channelization: EDMA TDMA CDMA: Ethernet: IEEE	
	standards; Standard Ethernet: MAC Sublayer, Physical Layer;	
	Bridged Ethernet, Switched Internet, Full-Duplex Ethernet; Fast	
	Ethernet: MAC Sublayer, Physical Layer; Gigabit Ethernet: MAC	
	Sublayer, Physical Layer, Ten Gigabit Ethernet.	
5	The Network Layer:	07
	Network Layer Design Issues: Store and Forward Packet switching,	
	Service provided to the transport layer, Implementation of	
	connectionless and connection oriented services, comparison of	
	Virtual-Circuit and Datagram Subnets; Routing Algorithms: Shortest path routing Elooding Distance vector routing Link state	
	routing, Hierarchical routing, Broadcast routing, Multicast Routing:	
	Congestion Control Algorithms: General Principles, Congestion	
	prevention policies, Congestion control in virtual circuit &	
	Datagram subnets; Quality Of Service: Requirements, Techniques	
	for achieving good QoS; Internetworking; Introduction to IP	
	Protocol and IP Addresses,	
6	The Transport Layer:	03
	The Transport Service: Transport service primitives, Berkeley	
	Sockets, Socket programming examples; Elements of Transport	
	Protocols: Addressing, Connection Establishment, Connection Release Flow control and buffering Multiplexing: Introduction to	
	the Internet Transport Protocols: UDP and TCP	
7	Notwork Hordwore Components	04
/	Connectors Transceivers and Media converters Network interface	04
	cards and PC cards, Repeaters, Hubs, Bridges, Switches, Routers	
	and Gateways etc	
8	Wireless LANs/WANs:	03
	Inroduction to Architecture and Layers of IEEE 802.11, Bluetooth,	
1	SONET; Introduction to Satellite Networks.	

TOPICS FOR EXPERIMENT

- 1. Programs on Error detection and correction: CRC, Hamming Code, Checksum, etc
- 2. Use network simulators like NS2 to implement:
 - a. Monitoring traffic for the given topology
 - b. Analysis of CSMA and Ethernet protocols
 - c. Network Routing: Shortest path routing, DVR, LSR.
 - d. Analysis of congestion control (TCP and UDP).
- 3. Network Socket programming:
 - a. TCP/UDP Client-Server program.
 - b. Stop and Wait using sockets.
 - c. Sliding Window Program using sockets.

4. Assignment: Case study with Windows / Linux, Prepare short note on any one advanced topic.

BOOKS

Text Books:

1. A. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.

2. B. A. Forouzan, "Data Communications and Networking", TMH, Fourth Edition.

References:

1. M. A. Gallo and W. M. Hancock, "Computer Communications and Networking Technologies", CENGAGE Learning (Indian Edition), First Edition.

2. Peterson, and Davie," Computer Networks", Morgan Kaufmann, Second Edition.

3. Kurose, Ross, "Computer Networking", Pearson Education, Third Edition.

- 4. S. Keshay, "An Engineering Approach to Computer Networking", Addison Wesley.
- 5. W.R. Stevens, "Unix Network Programming", Vol.1, Pearson Education.

TERM WORK

Term work should be based on the Lab experiments (10 Marks) ,attendance (5 Marks) and at least one term test must be conducted with a weightage of (10 Marks).

PRACTICAL/ORAL EXAMINATION

A Practical/Oral examination is to be conducted based on the above syllabus.

University of Mumbai				
Class: T.E.	Branch: Computer	Semester: V		
	Engineering			
Subject: Environment Studie	es(Abbreviated as EVS)			
Periods per Week	Lecture	02		
(each 60 min)	Practical			
	Tutorial	01		
	Hours	Marks		
Evaluation System	Theory	02	50	
	Practical and Oral			
	Oral			
	Term Work		25	
	Total	02	75	

Objectives: Objective of this course is to create environmental awareness, of variety of			
environm	ental concerns.		
Module	Contents	Hours	
1	Nonliving Environment	05	
	Soil		
	Origin, Classification, Soil types of India, Mineral Resources,		
	Equitable Use of Mineral Resources		
	Water		
	Earth's reserves, Saltwater, Freshwater, Atmospheric water &		
	Rainfall, Hydrology, Minimum Environmental Flows		
	Air		
	Composition, Oxygen, Carbon dioxide, Nitrogen, Wind		
	Solar System		
	The Sun, Solar energy		
2	Living Environment	05	
	Biodiversity, Genes, Populations, Species, Communities, Value of		
	Biodiversity		
	Ecosystems		
	Classification, Ecosystem Resilience, Productivity, Food chain,		
	Food web		
	Nutrient cycling		
	Biomes		
	Rainforests, Seasonal broadleaved forests, Conifer forests		
	Swamps, Grasslands, Arid and Semi-arid biome, Polar biome,		
	Oceans		
3	Social Environment	08	
	Population		
	Population explosion and migration, Women and Children,		
	Pressures of population growth, Industrialization, Conflicts over		
	land, Social conflicts		
	Disasters, Human Rights and Value Education		
	Food: Agriculture, Irrigation, Livestock, Fisheries, Sustainable		
	agriculture		
	Health: Communicable diseases, Vector borne diseases, Pandemics,		

	Vulnerable groups, Role of information and awareness	
	Energy: Non-renewable Energy, Renewable Energy, Hydroelectric	
	energy, Solar energy, Wind energy, Energy from biomass, Bio-	
	diesel	
	Urbanization: Habitation, Communication, Recreation	
	Waste: Solid wastes, Sewage and Wastewater, Hazardous wastes,	
	Management of solid wastes, Land disposal and Sanitary landfills,	
	Recycling, Medical wastes Industrial wastes, Wastewater treatment,	
	Bioremediation of wastewater	
	Biodegradation and Composting, Management of toxic and	
	hazardous wastes	
	Pollution: Air pollution, Noise pollution, Thermal pollution, Water	
	pollution, Marine pollution, Bio-magnification, Land pollution,	
	Control	
	Economy : Subsistence, Markets, Global trade regimes	
	Natural resource depletion : Deforestation, Mining, Soil erosion,	
	Loss of wetlands, Loss of biodiversity, Desertification	
	Invasive species : Plants, Animals, Genetically Modified Organisms	
4	Environmental Conservation : Early warning systems, Bio-	06
	indicators, Tsunami & other natural disasters Disaster management	
	Impact assessment :Inventorying, Monitoring, GIS	
	Protected Areas : Wildlife Sanctuaries, National Parks, Biosphere	
	Reserves	
	Endangered species : Ex-situ conservation, Conservation breeding	
	Economic valuation : Bio-resources, Nature's services	
	National Legislation : Constitutional provisions for safeguarding the	
	environment, The Environmental (Protection) Act, The Air	
	(Prevention and Control of Pollution) Act, The Water (Prevention	
	and Control of Pollution) Act, The Wildlife (Protection) Act,	
	Forest Act, Biodiversity Act	
	International Conventions and Treaties :Ramsar Convention,	
	CITES, Convention on Biological Diversity, Convention to Combat	
	Desertification, Convention on Climate Change	
5	Global Efforts in protecting the living environment	06
	Global Biodiversity Assessment, Ecosystem services and	
	Millennium Ecosystem Assessment	
	Sustaining Biodiversity: The Species Approach	
	Species Extinction, importance of wild species, causes of premature	
	extinction of wild species, protecting wild species, wild sanctuary,	
	legislation, Reconciliation ecology	
	Environmental Economics, politics, and worldviews	
	Economic Systems and Sustainability	
	Using Economics to improve Environmental Quality	
	Reducing poverty to improve Environmental quality and human	
	well-being	
	Micro loans for the poor	

Theory Examination:

- 1. Question paper will be comprising of total 7 questions, each of 10 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term work:

Term work shall consist of minimum Five projects (PROJECTS SHALL BE DESIGNED ON THE SAME GUIDE- LINE OF BOOK BY Jagdish Krishnawamy, R J Ranjit Daniels, "Environmental Studies", Wiley India Private Ltd. New Delhi) and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Tutorial/Project and Journal) : 15 marks.

Test (at least one) : 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Recommended Books:

- 1. Jagdish Krishnawamy, R J Ranjit Daniels, "Environmental Studies", Wiley India Private Ltd. New Delhi
- 2. Anindita Basak, Environmental Studies, Pearson
- 3. Deeksha Dave , "Textbook of Environmental Studies", Cengage learning, THOMSON INDIA EDITION
- 4. Benny Joseph" Environmental Studies" Tata McGRAW HILL
- 5. D. L. Manjunath, Environmental Studies, Pearson
- 6. R.Rajgopalan, Environmental Studies, Oxford
- 7. Erach Bharucha, Textbook of Environmental Studies, Universities Press/Orient BlackSwan.

University of Mumbai				
Class: T.E.	Branch: Computer	Semester: V		
	Engineering			
Subject: Microprocessors (A	bbreviated as MP)			
Periods per Week	Lecture	04		
(each 60 min)	Practical	02	,	
	Tutorial			
Evaluation System	Theory	03	100	
	Practical and Oral		50	
	Oral			
	Term Work		25	
	Total	03	175	

Module	Contents	Hours
1	Introduction to Intel 8085 Microprocessor:	06
	Basic functions of the microprocessor, System bus,	
	Architecture, Pin Configuration and Programmer's model of	
	Intel 8085 Microprocessor.	
	Overview of the instruction groups of 8085 and the	
	addressing modes.	
	(No programming based on 8085).	
2	Intel 8086 Architecture:	04
	Major features of 8086 processor, 8086/88 CPU Architecture	
	and the pipelined operation, Programmer's Model and	
	Segmented Memory.	
3	Instruction Set of 8086 and Programming:	06
	Instruction Set of 8086 microprocessor in details, Addressing	
	modes of 8086/88, Programming the 8086 in assembly	
	language, Mixed mode programming with C-language and	
	assembly.	
4	Designing the 8086 CPU module:	06
	8086 pin description in details, Generating the 8086 System	
	Clock and Reset Signals, 8086 Minimum and Maximum	
	Mode CPU Modules, Minimum and Maximum Mode	
	Timing Diagrams, Interrupt Structure, Interrupt Processing	
	and the Predefined interrupts in 8086 Processor.	
5	Peripheral Controllers for 8086 family and System Design:	14
	Functional Block Diagram and description, Control Word	
	Formats, Operating Modes and Applications of the	
	Peripheral Controller namely 8255-PPI, 8253-PIT, 8259-PIC	
	and 8237-DMAC. Interfacing of the above Peripheral	
	Controllers.	
	Keyword and Display Interface using 8255.	

	Memory Interfacing: SRAM, ROM and DRAM (using a typical DRAM Controller such as Intel 8203). System Design based on the Memory and Peripherals	
6	Multiprocessor Systems: Study of Multiprocessor Configurations namely Tightly Coupled System (TCS) and Loosely Coupled System (LCS), TCS with the case study of the Coprocessor, Various System Bus Arbitration Schemes in LCS, and Role of the Bus Arbiter (Intel 8289) in the LCS.	06
7	I/O Buses and Standards: The EIA RS-232C Serial Interface Standard and IEEE-488 GPIB Standard.	02

Term work:

Term work shall contain minimum 10 experiments (from the list given below) and 03 assignments and at least one term test on the above syllabus.

A mini-project based on the syllabus to be taken by group of students and is desirable but not mandatory.

- (a) <u>Term work and the journal:</u>
 - Assembly Language Programming based on TASM/MASM- 03 experiments.
 - Assembly Language Programming using BIOS/DOS interrupts- 02 experiments.
 - Mixed Language Programming- 02 experiments,
 - Peripheral Interfacing and applications- 05 experiments.

The journal shall also contain at least 03 assignments on the syllabus/ beyond syllabus.

Maximum weightage for the certified journal = 10 Marks in the Term work. the Term work.

(b) <u>Term test:</u>

Test can be a mid-term test of 50 marks (preferably preliminary examination of 100 marks at the end of the semester).

Maximum weightage for the test = 10 Marks in the Term work.

(c) <u>Attendance:</u>

Minimum 75% attendance is mandatory for the student to maintain the term. Maximum weightage for the attendance = 05 Marks in the Term work.

Practical examination:

Practical examination is based on the experiments carried out in the term work and may contain the other experiments based on the concepts. Necessary data sheets/control word formats will be available to the students at the time of the practical examination

Oral examination:

Oral examination is based on the entire syllabus and may not be restricted to the practical carried out in the practical examination.

List of reference books:

- 1) Microprocessor architecture and applications with 8085: By Ramesh Gaonkar (Penram International Publication).
- 2) 8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education).
- 3) 8086 Microprocessor Programming and Interfacing the PC: By Kenneth Ayala
- 4) Microcomputer Systems: 8086/8088 family Architecture, Programming and Design:
- By Liu & Gibson (PHI Publication).
- 5) Microprocessor and Interfacing: By Douglas Hall (TMH Publication).

University of Mumbai			
Class: T.E.	Branch: Computer	Semester: V	
	Engineering		
Subject: Theory of Computer	r Science (Abbreviated as TCS	S)	
Periods per Week	Lecture	04	
(each 60 min)	Practical	02	
	Tutorial		
		Hours	Marks
Evaluation System	Theory	03	100
	Practical and Oral		
	Oral		
	Term Work		25
	Total	03	125

	OBJECTIVES		
Objective	Objectives of the Course : This course aims to build concepts regarding the fundamental		
principles	of Grammars, Automata Theory, Turing Machines, Push Down A	utomata,	
Undecida	Undecidability and Intractable Problems		
	PREREQUISITES		
Prerequi	sites: Discrete Structures and Graphs Theory (e.g. Graphs, Trees, Lo	ogic and	
Proof Teo	chniques) and also familiar with common Data Structures, Recursion,	and the	
role of ma	ajor system components such as Compilers.		
Module	Contents	Hours	
1	Introduction: alphabets, Strings and Languages, automata and	05	
	Grammars. Finite. Automata (FA) -its behavior; DFA -Formal		
	definition, simplified notations (state transition diagram, transition		
	table), Language of a DFA. NFA -Formal definition, Language of		
	an NFA. An Application: Text Search, FA with epsilon-transitions,		
	Eliminating epsilon-transitions, Equivalence of DFAs and NFAs.		
2	Regular expressions (RE) - Definition, FA and RE, RE to FA, FA to	03	
	RE, algebraic laws for RE, applications of REs, Regular grammars		
	and FA, FA for regular grammar, Regular grammar for FA		
3	Proving languages to be non-regular - Pumping Lenma, and its	03	
	applications. Some closure properties of Regular languages -		
	Closure under Boolean operations, reversal, homomorphism, inverse		
	homomorphism, etc. M hill-Nerode Theorem.		
	1 '		
4	DFA Minimization.	03	
	Some decision properties of Regular languages -emptiness,		
	finiteness, membership, equivalence of two DF As or REs, Finite		
	automata with output.		
5	Context-free Grammars (CFGs) -Formal definition, sentential forms.	10	
-	leftmost and rightmost derivations, the language of a CFG.	-	
	Derivation tree or Parse tree-Definition. Relationship between parse		
	trees and derivations. Parsing and ambiguity. Application of CFGs		
	serie and and and another, reproduced of Ob,		

	Ambiguity in grammars and Languages. Simplification of CFGs - Removing useless symbols, epsilon-Productions, and unit productions, Normal forms -CNF and GNF. Proving that some languages are not context free -Pumping lemma for CFLs, applications. Some closure properties of CFLs -Closure under union, concatenation, Kleene closure, substitution, Inverse homomorphism, reversal, intersection with regular set, etc. Some more decision properties of CFLs, Review of some undecidable CFL problems.	
6	Pushdown Automata (PDA) -Formal definition, behavior and graphical notation, Instantaneous descriptions (Ids), The language of PDA (acceptance by final state and empty stack). Equivalence of acceptance by final state and empty stack, Equivalence of PDAs and CFGs, CFG to PDA, PDA to CFG. DPDAs -Definition, DPDAs and Regular Languages, DPDAs, Multistack DPDAs & NPDAs and CFLs. Languages of DPDAs, NPDAs, and ambiguous grammars	06
7	Turing Machines TM -Formal definition and behavior, Transition diagrams, Language of a TM, TM as accepters deciders and generators. TM as a computer of integer functions, Design of TMs, Programming techniques for TMs -Storage in state, multiple tracks, subroutines, etc. Universal TMs, Variants of TMs -Multitape TMs, Nondeterministic TMs. TMs with semi-infinite tapes, Multistack machines, Simulating TM by computer, Simulating a Computer by a TM, Equivalence of the various variants with the basic model. Recursive and recursively enumerable languages, Properties of recursive and recursively enumerable languages, A language that is not recursively enumerable (the diagonalization language). The universal language, Undecidability of the universal language, The Halting problem, Rice's Theorem, Greibach Theorem, Post's Correspondence Problem (PCP) -Definition, Undecidability of PCP. Context sensitive language and linear bounded automata. Chomsky hierarchy.	10
8	Intractable Problems :The classes P and NP, An NP-complete problem, A Restricted Satisfiability problem, Additional NP- complete problems, Complements of languages in NP, Problems Solvable in polynomial space, A problem that is complete for PS, Language Classes based on randomization, The complexity of primality testing.	08

TEXT BOOKS

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.

3. Michael Sipser, "Theory of Computation", Cengage Learning.

REFERENCES

1. O.G.Kakde, "Theory of Computation", LP.

2. Krishnamurthy E.V., "Introductory Theory of Computer Science", East-West press. **TERM WORK**

1. Term Work should consists of at least 04 experiments and 08 assignments (at least one implementation on each machine and at least one assignment on each module).

2. A Term Work should consists of Term Test must be conducted with a weightage of 10 marks.

University of Mumbai			
Class: T.E.	Branch: Computer	Semester: V	
	Engineering		
Subject: Web Engineering (A	Abbreviated as WE)		
Periods per Week	Lecture	04	
(each 60 min)	Practical	02	
	Tutorial		
		Hours	Marks
Evaluation System	Theory	03	100
	Practical and Oral		25
	Oral		
	Term Work		25
	Total	03	150

Objectives: To understand the concepts, principles, strategies, and methodologies of		
Web applications and development. to apply current Web technologies to understand		
current Web business models, to understand and apply Web development processe		
Module	Contents	Hours
1	An Introduction to Web Engineering	03
	Motivation, Categories of Web Applications, Characteristics of Web	
	Applications, Product-related Characteristics, Usage-related	
	Characteristics, Development-related Characteristic, Evolution of	
	web engineering.	
2	Requirements Engineering for Web Applications	05
	Introduction, Fundamentals, Where Do Requirements Come From?	
	Requirements Engineering Activities RE Specifics in Web	
	Engineering, Principles for RE of Web Applications, Adapting RE	
	Methods to Web Application Development, Requirement Types,	
	Notations, Tools.	
3	Technologies for Web Applications	08
	Client-side Technologies, ActiveX Controls, Document-specific	
	Technologies, HTML-Hypertext Markup Language, DHTML, SMIL	
	Synchronized Multimedia Integration Language, XML-eXtensible	
	Markup Language, XSL-eXtensible Stylesheet Language, Java	
	Script, Server-side Technologies, Servelet, URI Handlers, Web	
	Service, Middleware Technologies	
4	Web Application Architectures	06
	Introduction, Fundamentals, What is an Architecture? Developing	
	Architectures Categorizing Architectures, Specifics of Web	
	Application Architectures, Components of a Generic Web	
	Application Architecture, Layered Architectures, 2-Layer	
	Architectures, N-Layer Architectures Data-aspect Architectures,	
	Database-centric Architectures, Architectures for Web Document	
	Management, Architectures for Multimedia Data	

5	Modeling Web Applications Introduction, Fundamental, Modeling Specifics in Web Engineering, Levels, Aspects, Phases Customization, Modeling Requirements, Hypertext Modeling, Hypertext Structure Modeling Concepts, Access Modeling Concepts, Relation to Content Modeling, Presentation Modeling, Relation to Hypertext Modeling, Customization Modeling, Relation to Content, Hypertext, and Presentation Modeling.	06
6	Web Application Design Introduction, Web Design from an Evolutionary Perspective, Information Design, Software Design: A Programming Activity, Merging Information Design and Software Design, Problems and Restrictions in Integrated Web Design, A Proposed Structural Approach, Presentation Design, Presentation of Nodes and Meshes, Device-independent Development, Approaches, Interaction Design, User Interaction User Interface Organization, Navigation Design, Designing a Link Representation, Designing Link Internals, Navigation and Orientation, Structured Dialog for Complex Activities, Interplay with Technology and Architecture,Functional Design.	08
7	Testing Web Applications Introduction, Fundamentals, Terminology, Quality Characteristics, Test Objectives, Test Levels, Role of the Tester, Test Specifics in Web Engineering, Test Approaches, Conventional Approaches, Agile Approaches, Test Scheme, Three Test Dimensions, Applying the Scheme to Web Applications, Test Methods and Techniques, Link Testing, Browser Testing, Usability Testing, Load, Stress, and Continuous Testing, Testing Security, Test-driven Development, Test Automation, Benefits and Drawbacks of Automated Test, Test Tools.	08
8	Web Project ManagementUnderstanding Scope, Refining Framework Activities, Building aWebE Team, Managing Risk, Developing a Schedule, ManagingQuality, Managing Change, Tracking the Project.	04

BOOKS

TEXT BOOKS

- 1. Gerti Kappel, Birgit Proll, "Web Engineering", John Wiley and Sons Ltd, 2006
- 2. Roger S.Pressman, David Lowe, "Web Engineering", Tata Mcgraw Hill Publication, 2007
- 3. Guy W. Lecky-Thompson, "Web Programming", Cengage Learning, 2008 **REFERENCES**
- 1. Moller, "An Introduction to XML and Web Technologies", Pearson Education New Delhi, 2009
- 2. Chris Bates, "Web Programming : Building Internet Applications", Third Edition, Wiley India Edition, 2007
- 3. John Paul Mueller, "Web Development with Microsoft Visual Studio 2005", Wiley Dreamtech, 2006.

TERM WORK

- 1. Atleast six practical experiments based on above syllabus
- 2. A mini project is desirable to be completed by a group of three that cover following tools.
 - HTML
 - DHTML
 - XML
 - Java Script
 - Servelet
- NOTE: The above (mini project) would carry a weightage of 10 marks.

A term work test must be conducted with a weightage of 10 marks. Attendance 05 marks.

3. Industrial visit: Prepare and submit the report of Industrial visit in a group. Each group contain not more than five students.